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A model of the mature hurricane 

By G. F. CARRIER, A. L. HAMMOND AND 0. D. GEORGE 
Harvard University 

(Received 24 July 1970) 

A schematic picture of the structure of a mature hurricane is hypothesized. 
The heat and moisture transfer, the boundary-layer dynamics and the overall 
dynamic and thermodynamic balances are analysed crudely, but sufficiently 
accurately to provide support for the hypothesis. 

1. Introduction 
The mature tropical hurricane is the largest example of a class of intense 

swirling motions which occur naturally in the atmosphere. The structure of 
these flows, other instances of which include tornados, water spouts, fire storms 
and dust devils, seems not to have been fully explained as yet. Although the 
role of friction in assisting the growth of the storm by increasing the supply of 
fuel has been recognized (Charney & Eliassen 1964), the emphasis of much pre- 
vious work on the hurricane has been on finding a parameterization of cumulus 
convection which would permit realistic life-cycles for model storms without 
clearly specifying the structure and the relevant physics involved (Ooyama 1969 ; 
Yamasaki 1968; and Rosenberg 1969). The needfor veryhigh moisture and heat 
content of the boundary-layer air also has long been recognized (Malkus & Riehl 
1960). Nevertheless, no really consistent picture of the dynamics or energetics of 
the mature storm has appeared. The role of the frictionally-driven recirculation 
in the eye in maintaining the intense storm and the consequent implication that 
the energetics of the storm are secondary to the dynamics seems not to have been 
seriously considered. A model consistent with these ideas is proposed in this 
paper where, in $ 3 ,  we develop the analysis of the boundary-layer dynamics 
appropriate to  the storm. In  3 4 we estimate the maximum velocities which are 
to be expected from the structure proposed here and from the relevant thermo- 
dynamic information. In  $ 5  we ask whether there exists a family of circum- 
ferential velocity distributions for which the resulting boundary-layer flows have 
the required properties and we present results of numerical calculations for the 
flows. In  $ 6 we estimate the effect of the boundary-layer flows on the heat and 
moisture content of the atmosphere and on the flux of these quantities at  the 
sea surface. 

Before proceeding to a description of the model, however, it is useful to sum- 
marize some pertinent facts about these storms. Hurricanes (or typhoons) are 
large cyclonic storms which occur in all months of the year but most frequently 
in the late summer and early autumn months. They become fully developed 
over the oceans in tropical latitudes, usually below 20°, and many of them 
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eventually migrate towards higher latitudes; they do not occur within 5" of the 
equator. The area over which the organized motion occurs is of the order of 
1000 miles or more in diameter, while the depth of the atmosphere which is 
significantly involved in the motion is only the lowest few miles. 

Almost all observers are agreed as to the general characteristics of the storm. 
It is described as a roughly circular cyclonic vortex with low level inflow to and 
high level outflow from an annular region of intense rainfall, maximum winds, 
and strong updrafts. In  the centre is a warm, dry, relatively quiescent core or 
'eye'. Slow settling occurs in the core and in the outer region of the vortex; 
also in the outer regions, the high level outflow becomes anti-cyclonic. The release 
of latent heat energy by condensation of water vapour in the inner rain area 
provides the density distribution which is needed to maintain the pressure 
gradient which, in turn, is needed to balance the centripetal accelerations which 
characterize the storm. Extreme low central pressure (typically 960 m or below), 
high central temperature at  upper levels (15°C above ambient), high vortex 
winds (100-200knots), and the presence of an eye distinguish the mature hurri- 
cane from the ordinary tropical depression, although by convention any tropical 
storm with winds exceeding 76 knots is so named. 

2. Model hurricane structure 
The foregoing facts seem to be consistent with the idealized structure shown 

schematically in figure 1. It consists of four dynamically distinct regions, which 
may be qualitatively described as follows: An updraft region of tall convective 
clouds and intense rainfall with accompanying release of large amounts of latent 
heat (region 111); a region of rapidly swirling winds corresponding to the large 
radial pressure gradient (region 11) ; a boundary layer (region I) where the swirl 
winds interact frictionally with the sea surface, causing an inflow which supplies 
moist air to the updraft; and a warm, quiescent, relatively dry core, or eye, in 
which there is a very slow recirculation (region IV). 

The swirling fluid of region I1 settles very slowly into the region below, sup- 
plying as it does so the fluid which moves radially inward in the boundary layer. 
There is almost no radial motion at  all in 11, and the flow therein is effectively 
frictionless. 

Frictional effects are important in the boundary layer, region I, where the 
swirling flow loses some of its angular momentum to the sea surface. The radial 
component of the pressure gradient throughout the boundary layer is virtually 
the same as it is near the bottom of region 11, but the frictionally depleted circum- 
ferential velocity in the boundary layer does not imply enough centripetal 
acceleration to balance that pressure gradient in I. Thus, the overall radial 
momentum balance is maiEtained in I only when the friction and momentum 
charges associated with a radial inflow are present. 

The radial influx of fluid in I ,  whose source is the downdraft from 11, moves 
into the annular region I11 where it flows upward and outward, conserving 
angular momentum. At a,ny given radial position the updraft fluid has a deficit 
in total angular momentum, compared to the fluid in I1 a t  the same radius, 
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merely because of the frictional loss to the sea surface, which occurred in I. 
In  the outer portions of the storm this deficit will appear as a negative circum- 
ferential velocity relative to the earth and, in fact, this high anti-cyclonic motion 
is always observed. 

The fluid in the central core (IV) is relatively motionless. It is also very warm, 
so that at a given altitude the fluid is much less dense than the updraft fluid in 111, 
which (for reasons explained below) is itself much less dense than nearby fluid 
in 11. These differences in fluid densities in regions 11,111, and IV imply that a 
column of air which is closer to the centre than a second column has less total 
weight than that more distant column; this is a necessary condition for the 
existence of the horizontal pressure gradient which balances the centripetal 
acceleration of the swirling flow in region 11. 

FIGURE 1. Schematic view of the hurricane. 

The thermodynamic situation is depicted in figure 2. Curve 1 displays a 
typical pressure-temperature relation (from empirical observation) for a column 
of ambient, late summer tropical air (that along r,-B in figure 1); this air is very 
moist at  the lower altitudes due to high evaporation rates from the warm ocean 
surface. When air from the bottom of this column moves inward in the boundary 
layer and then upward in the updraft region, its moisture condenses (and falls 
out as rain) and the released heat of vaporization is retained by the rising air. 
The moisture in this air reaches saturation early on this journey, since the 
pressure and temperature drop almost adiabatically. The thermodynamic path 
for this process is given in figure 2 by curve 2, which displays the pressure- 
temperature relation for moist adiabatic expansion from ground level ambient 
conditions to some altitude B, which is chosen here as the 130 mb level. It seems 
completely logical to place the top of the container at  that altitude above which 
the rising moist adiabat air would be denser than ambient air and below which 
the rising air would be less dense than ambient air. One sees that at a given alti- 
tude, the density must be smaller in region I11 than in region 11. 

10-2 
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The rising air in the updraft also entrains (frictionally) small amounts of air 
from the core and induces a slow recirculation in that core, with rising motion 
near the perimeter and settling in the centre. Probably, in fact, it is this recircula- 
tion that maintains the state of the gas in the core. The downward moving air 
would compress adiabatically (without re-evaporating any moisture) if there 
were no thermal exchange with the environment and, in the absence of such 
exchange, would consist largely of air compressed dry adiabatically from the 
state B of figure 2. Since there is some exchange with the adjacent air and water, 
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FIGURE 2 .  Thermodynamic loci. Curve 1 denotes the ambient p-T relation which was 
provided by Jordan (1957). The corresponding altitudes and densities are inferred using 
hydrostatics and the equation of state. Curve 2 denotes the p-T relation which obtains 
when gas in the state A is expanded moist adiabatically t o  lower pressures. Curve 3 denotes 
the p-T rolation for air which is compressed dry adiabatically from state B of curve 2 
to higher pressures. 

the actual density in the core has a distribution which is intermediate between 
that of the dry adiabat and that of the moist adiabat. Using this hypothesis, 
curve 3 in figure 2 represents the pressure-temperature relation obtained by 
dry adiabatic recompression of gas from altitude B which has previously 
ascended along curve 2; the density of the gas in these states, having 'gone up' 
curve 2 to B and then down curve 3 is a lower bound on the locus of actual 
densities in the eye. This locus of thermodynamic states (curve 3 in figure 2) 
is easily obtained by invoking the equation of state, the requirements of 
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hydrostatic equilibrium, and a statement describing the temperature depend- 
ence of the saturation partial pressure for water vapour. In particular, one can 
calculate readily by these means the largest pressure discrepancy at  ground level 
which is available to balance the centripetal acceleration of the swirl flow. 

Given the dynamically consistent, self-sustaining model configuration de- 
scribed above, we must now ascertainwhether quantitatively realistic flows occur. 
We restrict our attention to fluid motion in a uniformly rotating container of 
finite diameter and height. The container is chosen sufficiently large to enclose 
all phenomena associated with the storm. The motion is assumed axisymmetric 
throughout.? In  the swirl region (11) the radial distribution of the circum- 
ferential velocity (or rather a family of such distributions) is assumed given with 
the requirement that the velocity must vanish a t  the outer edge of the container. 
The dynamics of the boundary layer determined by this external flow are 
governed by the full non-linear equations to which we return in a moment; in 
particular, this boundary-layer problem will determine the vertical velocity at  
the top of the boundary layer, which we expect to be negative, but small, over 
the outer section of the storm. Since there can be no radial inflow through the 
outer walls of the container, the boundary-layer inflow must originate entirely 
from the downdraft. 

We do not treat the corner region (the boundary layer under the updraft region) 
where separation occurs and where the boundary-layer assumptions may break 
down, but insist that mass and angular momentum be conserved between the 
end of the boundary-layer region and the updraft region. In the updraft, non- 
viscous dynamics are taken as an adequate representation, with an imposed 
circumferential velocity distribution which goes smoothly from the maximum 
velocities (near r = rl in figure 1) to zero at the edge of the core. The fact that the 
fluids in the adjacent regions I1 and I11 have different angular momenta implies 
that the frictional coupling of the updraft flow to the main swirl flow is very 
weak and that very little diffusion of angular momentum occurs across the II- 
I11 interface. The very large horizontal scale associated with the overall flow 
(i.e the very small radial gradient of circumferential velocity) and the density 
discrepancies between the gas in I1 and the gas in I11 are consistent with such 
a loose coupling. Furthermore, any degradation of angular momentum in I1 
by diffusion to I11 should readily be negated by an otherwise negligibly small 
radial inflow in 11. If the weak coupling postulated here did not exist, it would 
be impossible to maintain swirl distributions of the sort described, and the flow 
would be restricted to a local recirculation in the neighbourhood of the updraft 
region rather than hurricane scale flows. 

The model is assumed to be a quasi-steady model, in the sense that the boun- 
daries of the regions change slowly with time as moist, rapidly circulating air 
from I1 is used up and I11 widens and settles; the storm feeds on its slowly 
diminishing initial store of angular momentum. The pressure is assumed to be 
constant radially across the top of the container (along AB in figure 1). The 

p There are sizeable deviations from symmetry in real storms but it seems most unlikely 
that the inferences we draw here could be significantly altered by the consequences of 
such asymmetries. 
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locations of the boundaries between adjacent regions are determined by re- 
quiring continuity of pressure across them. 

3. The boundary layer 
The maximum velocities achieved either in or near the boundary layer are 

such that density changes within the boundary layer have negligible effect on 
the dynamics. (In no real storm will the Mach number exceed +.) The same 
statement does not hold for the thermodynamics, for which a fully compressible 
treatment must be used. Accordingly, the dynamics of the boundary layer (but 
not its thermodynamics) will be treated as though the fluid were incompressible 
(zero Mach number) with constant properties. Similarly, gravity plays a negligible 
role in determining the boundary-layer dynamics, due to the thinness of the 
fluid layer, so that while the ambient stratification must be included in estimates 
of the boundary-layer heat and moisture transport, the dynamic calculations 
will be carried out for an unstratified fluid. 

The gradual changes which occur in the velocities and the geometry of the 
mature hurricane occur on a time scale much longer than one day. However, 
the thickest part of the boundary layer is in a region where the fluid motion 
relative to the earth is so slow that h N (vQ)* and to N h2/v N Q, where I2 is the 
local normal component of the earth's rotational velocity ( h  is bouiidary-layer 
thickness, v is the eddy diffusivity and to is boundary-layer formation time). 
Thus, modifications of the boundary-layer structure which occur with a time 
scale of one day or longer are quasi-steady in character. Accordingly, we can 
conclude that boundary-layer formation or adjustment is not the rate controlling 
process in the continuing evolution of the mature storm, and we can use with 
confidence steady theory for the boundary layer itself. 

Using a constant eddy viscosity, and a constant density, p, we write the steady- 
state conservation equations in a co-ordinate system which rotates with the 
container; i.e. the angular velocity of the co-ordinate system is the vertical 
component of the earth's angular velocity which, at 15" latitude, is given by 
Q 2: 1.5 rad/day. Since the ratio of the vertical scale to the horizontal scale is of 
order we ignore horizontal diffusion compared to vertical diffusion and the 
conservation equations take the form 

w,+ (rw), = 0, 
uu, + wu2, - 2Qv - (v2/r) + p ,  = vu,,, 

u(rv),+ w(rv),+ 2Qru = v(rv),,, 

P,+9 = 0, 

where u, v, w are radial, circumferential and vertical components of velocity, 
and p is the pressure divided by p. Equation (3.4) gives an incorrect view of the 
hydrostatic contribution to the pressure field but this plays no significant role 
in the boundary-layer dynamics. 

We denote the circumferential velocity in region I1 by V ( r )  and we note that 

w(r,oo) = V(r )  
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and, when (3.2) is applied to region I1 

pJr,  co) = V2/r  + 2QV. (3.5) 

Sincep changes with x only by virtue of the hydrostatic effects implied by (3.4), 
we see that, in (3.2), pT can be replaced by (3.5) and (3.2) becomes 

uu7 + wuz + 2Q( V - v) + ( V 2  - v2)/r  = vuz,. (3.6) 

The following non-dimensional variables are convenient choices for the 
manipulation to follow: 

Y = rV/Yo, y9 = rv/Y,, $ = ru/Y,, 

z' = z / ( v /2Q) t ,  w' = w/(2vQ)&, x = r2Q/Y0. 

Y, is a dimensional quantity which characterizes the strength of the storm; 
it can be taken conveniently as rl V(r,) where rl is the vaIue of r at or slightly 
outside of the radius of maximum velocity. 

In  terms of these variables (dropping primes immediately), (3.6), (3.3) and 
(3.1) become 

(3.7) 

(3.8) 

$x+wz = 0. (3.9) 

$$x + W A  + (Y2 - y9."- # 2 ) / 2 x  + (T - $) = A,, 
9$., +w$z + # = $-m 

The boundary at z = 0 is relatively motionless and we will adopt the boundary 
condition which requires that $, y9 and w must each vanish at  z = 0. For a pre- 
scribed swirl flow V = V(r )  in the (inviscid) exterior region, the tangential 
momentum equation becomes 

U[(rV)T+2Qr]  = 0. 

Since the swirl distribution reported from observation and various laboratory 
experiments suggest that in the cases of interest here V(r )  E r-", where n 21 1, 
the appropriate accurate approximate boundary condition requires that U = 0. 
Hence for a given swirl distribution we have $(x, co) = 0, $(x, 00) - Y(x) = 0. 

All velocities decrease in magnitude as x --f 00, so that for x B 1 we have 
Qr B V ,  and (3.7)-(3.9) become 

$zz = (T - y9L 
(Y - y 9 h Z  = - $ 9  

w, = -&. 
Subject to the boundary conditions above, the solutions (which are the well- 
known Ekman profiles) are 

(Y - $1 + i# = Y(Z) e-ita, (3.10) 

(3.11) 

Hence for the (3.7)-(3.9) we complete the boundary conditions by requiring that 

y-$+$ = y e - i h  (3.12) 

when x is near the outer boundary of the container. 
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We can also carry out the asymptotic analysis for large z which we record 
here since it will be useful in obtaining the numerical solutions to the complete 
equations. If, as z -+ 00, q5 --f $, Y - @ -+ $and w -+ W(x)  + &, where W ( x )  = w(x, 00) 

and all quantities characterized by a A are small compared to unity, then the 
following linearization of (3.7) and (3.9) holds: 

$zz= m Z + ( l + v 4 $ ?  

$zs = W A -  (1 +YJ $9  

$x+72z = 0. 
These have solutions: 

= A,(x) e-hl(x)z sin (h2(x) x )  +A2(%) e-A1(x)zccos (h2(x) x ) ,  (3.13) 

$ = ~ , ( x )  e-~l(x)zcCos (h,(x) x )  +B2(x) e-Ai(z)zssin (A2(%) 2) .  (3.14) 

Here A,, A,, B, and B, are arbitrary functions except that they must match 
to the large x solutions; that is 

A2(a) = B2(m) = 0, Al(x -+ 00) = -B,(x + 00) = -Y?. 
The functions A, and A, are given by 

2h, = ( W4 + 16p)i cos [& tan-, (4p8/W2)] - W ,  (3.16) 

2h2 = ( W4+ l6p)isin [i tan-I (4p*/W2)] ,  (3.16) 

where p = (1 +Y/x) ( 1  +YZ). When I WI < 2p = 0(l), as it is for the swirl flows 
of interest, then these solutions simplify with A, = A, = h = p*/29. 

4. Maximum velocity estimates 
The maximum velocities which can be obtained from the model configuration 

of figure 1 and the thermodynamic information of figure 2 can be estimated as 
follows. It is evident observationally that circumferential velocity distributions 
achieved in the swirl region approximately resemble P = cr-n. The radial 
momentum equation just above the boundary layer (3.5) becomes 

PT ,z P C  2 Ir 2nfl- 

The density varies so little with radial position that (again) it may be taken to be 
a constant. Integrating from the edge of the container, r = ro (in figure 1) to the 
region of maximum winds, r = rl, 

Since the width of the updraft region is small compared to ro - rl and since V(r )  
decreases rapidly with decreasing r in this region, 

W l )  -P(Y,f < 1, 
Hro) -P(T1) 

so that the maximum velocity achievable can be estimated as 

%ax = I(2nlPo) (PPO) - 2 3 @ " 2 ) ) l + .  (4.1) 

Estimates will be made for the extremes n = 4 and n = 1. One observes that for 
a given pressure drop, the more rapidly decaying profile corresponds to larger 
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peak velocities, in good agreement with the observation that small storms (in the 
sense of the radial extent of the region of high winds) are often the most intense. 

The pressure drop determined from curves 1 and 3 in figure 2 at x = 0 is 
Ap z 140mb, which corresponds to maximum velocities (using (4.1) of 

V,,, = 100metres/sec for n = Q and V,,, = 155metres/sec for n = 1. 

Clearly the model configuration can support velocities which are considerably 
larger than those of real storms based solely on the thermodynamic properties 
of ambient tropical air. If the heat and moisture content of boundary-layer air 
entering the updraft region were substantially different from ambient conditions, 
as a result, for example, of heat and moisture gained from the sea surface while 
passing through the boundary layer, then these estimates will need to be modified 
(in the direction of higher velocities). We return to this point after the considera- 
tions of 0 6. 

The calculations above may be repeated for an alternative model in which there 
is no eye and the updraft extends clear to the origin; in this case the vertical 
pressure distribution at the centre is that corresponding to the moist updraft 
air, curve 2 of figure 2, and one obtains Ap z 50mb. However, if the updraft 
extends into the axis of symmetry the velocity distribution (very roughly) will 
be linear in r out to the point of maximum velocity and the pressure drop be- 
tween ro and that point of maximum speed would be 25mb. Thus, with n = 1, 
the maximum speed would be V,,, = 62 metres/sec. These results, when compared 
to those above, strongly suggest that a tropical storm can achieve hurricane 
proportions only if an eye is present in which some updraft air returns dry 
adiabatically down the central region so that re-compression results and the 
dynamic balance is maintained. 

The above estimates do not depend on the radial extent of the storm nor are 
they very sensitive to the level chosen for the top of the storm. We emphasize 
that very large pressure differences can be supported when ambient tropical 
air is expanded moist adiabatically to some level associated with the top of the 
storm, and then recompressed adiabatically without moisture addition in part 
of the central column. This  latter step i s  crucial i f  very high velocities are to be 
achieved. The fact that hurricanes do not achieve the enormous velocities cal- 
culated above is associated with the incomplete filling of the eye with dry adiabat 
air and with the fact that some heat is exchanged between air in the eye and its 
environment. 

5. Numerical solution of the boundary-layer equations? 
Attempts have been made by previous investigators to solve (3.7) and (3.9) 

for certain special cases. When the prescribed exterior swirl flow, Y(x), is that of 
rigid body rotation, Y = cx with constant c, (3.7)-(3.9) admit of separable solu- 
tion of the form 

$ = xf(4, $ = xg(4 ,  w = - l 2 f ( s ) d g .  0 

f The results presented in this section are derived and discussed in more detail in 
George ( I  970). 
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The ordinary differential equations governing f and g can then be integrated 
numerically (Lance & Rogers 1960); however, rigid body rotation is not a 
realistic model for hurricane swirls. 

The flow under a realistic swirl has been treated approximately by use of the 
momentum integral method (Smith 1968). However, numerical studies of the 
boundary-layer equations in an inertial frame of reference (Anderson 1966) in- 
dicate that the momentum integral technique is not sufficiently accurate to 
predict reliably the vertical velocity a t  the top of the boundary layer, an extremely 
small but physically very significant quantity. 

The boundary-layer equations in the rotating system do not yield to  straight- 
forward finite difference methods due to instabilities caused by the change of 
sign of the radial flux Q in some regions of the flow; in these regions (where q5 > 0), 
(3.7) and (3.8) assume the form of the heat equation with negative time-like 
co-ordinate, so that forward steps are no longer possible. It is, therefore, necessary 
to look for other more suitable numerical methods; in particular, we desire that 
our solution method be applicable for a wide variety of exterior swirls. A series 
expansion method in combination with the Galerkin technique is found t o  satisfy 
this requirement. 

5.1. The solution method 

Using the asymptotic solutions (equations (3.13)-(3.14)) as a guide, we adopt a set 
of suitable base functions {wn(x, z)} ,  n = 1,2,  . . . , with wn(x, 0 )  = wn(x, CO) = 0. We 
assume that the solutions of (3.7)-(3.9) can be represented in D :  0 < x < 00, 
0 < x < co in terms of these base functions by the series expansions 

(5.1) 

( 5 . 2 )  

(5.4) 

The first term in the expression for 9 is introduced so that the functionst 
q5 and $‘ represented by the series expansions satisfy homogeneous boundary 
conditions; q5 and $‘ belong to  the class s of continuously differentiable functions 
f defined in the interval 0 < 6 < cx) and having the properties 

1: f 2 d c  < a, f ( o )  = 0,  f N e-<sin < as 6 --f oo. 

A series of numerical experiments (George 1970) has shown that the base 
functions 

1 ”  

H i  rC= 1 
wn(c)  = - C g,, e-”[ sin k& 

t We note that when d is known, w is determined from the integral (5.3) of the con- 
tinuity equations. 
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can be used to approximate arbitrary functions in s; here g,, and H, are ortho- 
normalizing coefficients for the set {e-kc sin kc}:),"=, such that 

the Kronecker delta. The approximations of trial functions were carried out in 
the least square sense, but the resulting pointwise errors were found small 
compared to the function values. Similarly the coefficients of the expansions in 
terms of wn(<) converged rapidly as n increased. 

The base functions for the expansions (5.1) and (5.4) are therefore chosen as 

n 

k=l  
w,(x, x )  = C g,, e-(kA(z)z)sin (kh(x)  x )  (n = 1, 2,3,  . . .) (5 .5 )  

with w,w,dx = Hn6,,/h(x). 

With this representation the series equations (5.1)-(5.3) are substituted into 
the boundary-layer equations (3.7)-(3.8). The Galerkin technique is used to make 
the residuals small compared to unity; thus 

(n = 1 , 2 , 3 , . . . )  (5.6) i fr on(z, 2) %(#, +)w) = 0 

/om on(x, 2) 9 2 ( + ,  +> w) = 0 

where ,Ep1(#, +, w) = 0 and g2(#, +, w) = 0 are the radial and peripheral momen- 
tum equations, (3.7) and (3.8). This yields a set of ordinary differential equations 
for the coefficients a,(x) and b,(x). 

Starting from the Ekman-layer values for a given swirl at  large x ,  the ordinary 
differential equations were integrated numerically towards the origin using a 
Haming predictor-corrector routine with Picard starting iteration. The following 
numerical experiments were done to ensure that the results obtained are correct: 

(1) For a given swirl and a fixed number of terms, N ,  in the series approxima- 
tion (usually N = 1 or 2)) the equations were integrated inward in x starting 
from different points, xm, until the coefficients ai, bi became independent of the 
starting point to at least five decimal places. The least value of all the starting 
points used for which a, and bi did become independent of the starting point 
was regarded as the Ekman-layer edge or the initial point for the integration. 
In  most cases this was found to be near x = 5 .  

( 2 )  Experiment (1) was repeated for different step sizes, mostly within the 
range O( 10-3) < L < O(10-2). It was found changes in the step size did not affect 
the results of experiment (1)  up to five decimal places, for those step sizes for 
which the Picard starting iteration converged. 

(3) Using the initial point and a suitable step size determined from the above 
experiments, the equations were integrated with higher values of N until the 
higher-order coefficients a,, b, became less than one percent of a, and until the 
downdraft at the top of the boundary layer (w(x, co)) became independent of N 
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up to three decimal places. In  most cases this convergence was achieved with 
N = 2 or 3. 

A final check was made by doing some cases of experiments (1)  and (2) for 
N = 3; these were found to make little or no difference in the initial points 
established for N = 1. Experiments (1) and (2) were done extensively for the 
swirls Y = xol and Y = 1. For the other swirls treated, a few cases of experiments 
(1) and ( 2 )  were done. Experiment (3) was done for all swirls treated. 

The residuals were computed and were found to be of 0(10-3) for z less than 
the e-folding thickness, l /h,  of the boundary layer and are therefore small 
compared to q5zz which is of O( 1) in this region. Finally, since 

q5ac(x, 0 )  = y’(1 +yf/x), 

a known function, the error of this quantity due to the approximation process 
was computed and found to be one percent or less for the main boundary layer 
(x < starting point but x > the region of strong updrafts). 

By virtue of all the foregoing checks - small residuals, converging coefficients 
and small errors in r j Z z  (x, 0)  -the results obtained are considered reasonably good 
approximations to the solutions of the boundary-layer equations. In particular, 
the calculation gives an excellent estimate of the total vertical flux of fluid into 
the boundary layer and this flux is the only quantitative result of the analysis 
which is needed in our calculation of the overall dynamic-thermodynamic 
balance. 

5.2. Discussion of numerical results 

The preceding solution method was applied to a variety of prescribed exterior 
swirl distributions and we present here the results of a few cases. As mentioned 
earlier, swirls observed in hurricanes seem to be of the form v = cr-n with 
+ 6 n < 1; this law cannot hold as r -+ co, since that would imply an infinite 
angular momentum (relative to the earth) associated with the storm. We avoid 
these difficulties if we require that the peripheral velocity vanish at a finite 
radius ro. A simple case is that of linear decay beyond a given radius r’: 

I v = cl/r 

v = c2(ro-r )  

(0 < r < r’), 

(r’ 6 r < ro). 
(5.7) 

Imposing continuity of velocity and stress at r = r‘, (5.7) becomes in non- 
dimensional form 

1 in 0 < x < $xo 
4 ( ( x / x 0 ) ~ - x / 2 0 )  in $xo 6 x < xo. 

Since this swirl vanishes at xo, it introduces a singularity in the differential 
equations at that point. Using the first terms of the series expansions (5.1)-(5.4), 
we investigated the behaviour of the solutions near the singular point with the 
usual Taylor expansion method. In this region the solutions closely approximate 
the Ekman-layer solutions (3.10)-(3.12) so that the starting procedures used for 
the numerical integrations were exactly those described above. 

In  interpreting the (non-dimensional) results, we choose as typical values 
for the parameters: Y = 105cm2/sec; V,,, = 150 miles/hour a t  rl = 20 miles; 
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Yo = rlVmax; effective angular velocity of the earth at  15" latitude !2 = 4 radians/ 
day. For brevity, the vertical velocity at  the top of the boundary layer, 
w(x,oo) = W ,  will be referred to as the downdraft, when W < 0, and updraft, 
when W > 0. 

The downdraft induced by the swirl (5.8) is displayed in figure 3. There is a 
large region of slowly-varying weak downdraft surrounding a small region of 
strong updraft near the centre. The downdraft extends from the edge of the 
storm (yo z 1000 miles) to about r = 200 miles where it becomes updraft;t until 
about r = 100 miles the updraft is very small, but inward of this position it 
increases very rapidly. The maximum downdraft is - W = 0.266 cmjsec. 
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FIGURE 3. Y, V and W vs. x for the swirl pattern. 

I1 (0 < x < 5.5).  

(5.8) 

The radial, circumferential, and vertical velocity profiles induced by the swirl 
(5.8) are shown in figures 4, 5, and 6. The radial velocity field shows an inflow 
layer of the order of one mile in vertical extent (the e-folding thickness is closer 
to 1800 feet) with an outflow layer of very slow radial velocity above the inflow 
layer. At each radius the maximum radial velocity is about one-third the 
maximum peripheral velocity. These velocities increase with decreasing radius, 
slowly at  first and then more rapidly as the centre is approached. We do not 
expect that these results are accurate in the region of strong updrafts, since the 
boundary-layer assumptions are no longer valid there. 

The vertical velocity is everywhere downward in the downdraft region, with 
maximum velocity attained at the top of the boundary layer. 

In  a hurricane one does not know the exact swirl distribution, and it need not 
be the same for all huricanes, so it is necessary to demonstrate that the overall 

t By the time this paper was in its h a 1  stages of preparation, further studies had 
revealed that this early updraft was an antifact of the methodology. However, the down- 
draft in 200 < r < 1000 miles is sufficiently accurate that no revision is needed for the 
purposes of this paper. 
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characteristics of the flow pattern are insensitive to small variations in the pre- 
scribed swirl. We have tested the sensitivity of the downdraft to the details of 
Y ( r )  using several different Y(Y) .  The details are given in George (1970). In 
brief, these studies confirm that the downdraft is not sensitive t o  those details. 
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FIGURE 4. Circumferential velocity profile in the boundary layer for the Y of figure 3. 
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FIGURE 5 .  Radial velocity distribution in the boundary layer for the Y of figure 3. 

We conclude that there exists a family of physically reasonable swirls for which 
the radial inflow to the storm is produced in a large region of weak downdraft, 
inside of which there is a narrow region of strong updrafts. We have shown, 
furthermore, that this general picture is stable with respect to small changes in the 
swirl distributions, and we believe that any self-contained model of the storm must 
involve swirls qualitatively similar to that of (5 .8) ,  which decay in a finite radius. 
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FIGURE 6. Vertical velocity distribution in the boundary layer for the Y of figure 3. 

6. Estimates of boundary-layer heat and moisture transfer? 
It is widely known that rotating fluids behave differently in many ways from 

non-rotating fluids, but it is less widely appreciated that heat and mass transfer 
due to forced convection may also be markedly different in rotating boundary 
layers from in non-rotating problems. This being the case, it is a doubtful practice 
at best to estimate such transfers in rotating systems by means of formulas 
based intuitively on the non-rotating flat-plate problem; instead it is desirable 
to arrive at  estimates based on the governing equations, even if only approximate 
calculations can be done. 

The present problem, i.e. the boundary-layer heat and moisture transfer from 
the warm sea surface in the mature hurricane, is an important instance of such 
rotating flows. There are in actuality two problems involved in sorting out the 
energetics of the storm. In  the first place there is the ambient air-sea energy 
conversion cycle; radiative heating of the upper layers of the sea; consequent 
evaporation of water at the sea surface; upward transport of the water vapour 
by turbulent mixing or convective cumulus clouds; heating of the air by release 
of latent heat of condensation; and finally, radiative cooling of the atmosphere 
to space. 

Secondly, there is the influence of the intense swirling flow associated with 
the storm and the resultant boundary-layer velocities on the air-sea energy 
transport processes. Although it is this latter problem of boundary-layer energy 
transfer under a swirling flow that is significant for the hurricane, it will be 
necessary to model the ambient air-sea interaction processes in order to 
adequately discuss hurricane energetics, since these ambient processes are in 
fact a dominant feature of the energy balance in the tropics. 

The wind fields of the storm are determined by the cyclone scale thermo- 
dynamics (the radial pressure drop and the release of latent heat in the updraft), 

7 The results presented in this section are derived and discussed in more detail in 
Hammond (1970). 
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but these winds are locally independent of the energetics of the flow. This means 
that the velocity profiles in the boundary layer may be prescribed independently 
of the local heat and moisture transfer (forced convection), although the con- 
verse is not true. However, we do not expect that the heat and mass transfer 
will depend sensitively on the exact velocity profiles used, as long as they are 
qualitatively correct. We therefore adopt analytically convenient approximate 
profiles for the boundary layer which retain the main features of the solutions 
found in the previous section, choosing the radial velocity in the form 

u = a sin ( h z )  e-hB 

and w is determined from the continuity equation (3.1). 
Here a and h are functions of the radial co-ordinate; these functions are chosen 

so that the downdraft at  the top of the boundary is uniformly distributed in r 
over the outer region of the storm and so that the maximum radial velocity is 
distributed in r like 

IU.maxl = + W ) 9  

where J' is the prescribed exterior swirl flow given by (5.8). These simplifications, 
qualitatively good approximations to the true situation, are accurate enough for 
the present investigation. 

6.1. The energy equation 

The condensation of even small amounts of water vapour releases large amounts 
of latent heat to the atmosphere, and this is in fact the main source of heat to 
the atmosphere. Even in saturated air, however, the concentration of water 
vapour is less than 2.5% by weight, and is usually much less for the temperatures 
prevailing in most of the atmosphere. Thus even though the heat capacity of 
water vapour is about twice that of air, the water vapour plays an important 
role in heat transfer only as a source of latent heat. We will make use of this fact 
by formulating an energy equation for dry air, idealized as a perfect gas, and 
by keeping track of the moisture content (through the equations of mass 
conservation) as a potential heating source. 

Radiation is also an important energy transfer mechanism in the atmosphere, 
but no explicit radiative calculations will be done here. However, the net 
radiative transfer to the atmosphere is usually negative, so that net radiative 
effects may be modelled by including an energy sink in the energy equation. 

With the assumption of local thermodynamic equilibrium, so that the thermo- 
dynamic functions and their relations for a closed system may be introduced, 
the energy equation for a fluid may be written (Goldstein 1960, p. 42): 

dS Dh l o p  1 1 
dt Dt p D t  p p 

T -  = = -Q+-V.q+Q+R.  

This equation states that the change in entropy (8) equals the viscous dis- 
sipation (@), the divergence of the conductive heat flux (q) ,  and the rate of heat 
addition per unit mass due to chemical reaction (Q) and radiation (R). For forced 
convection, it is usually convenient to choose the enthalpy (h)  as one of the 
thermodynamic variables, and we will do so here. We specialize to the case of a 
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perfect gas, for which d h  = c,dT, and introduce the Prandtl number, P, = ,ucp/k, 
and the Schmidt number, S, = p/pD. We also assume quasi-steady processes, 
such that DIDt = u a/ar + w 8/82, and neglect lateral diffusion compared to 
vertical diffusion, exactly as in the previous sections. 

With these simplifications we may write the following expressions for the 
terms on the right-hand side of (6.1) (neglecting R for now) 

Here, L is the heat of vapourization for water, - rR is the rate of loss of water 
vapour in the fluid due to chemical reaction, y is the mass fraction concentration 
of water vapour pA/p, and we have used the equation of conservation of water 
vapour (with yneglected compared to unity) to express the rate of heat addition 
due to condensation. 

If we combine the energy equation with the equations of motion, (3.1)-(3.3), 
we obtain 

-1 +R. (6.5) 
D 
Dt -(h+Ly+~(u2+w2)+gz) = 

We note the exact cancellation of the frictional dissipation and pressure terms 
in (6.5). With the further assumptions that P, = 8, = 1 (constants) and that ,U 

is independent of z, we can define a new energy function involving the stagnation 
enthalpy (h, = h + +(v2 + u2)), the latent heat energy L y ,  and the potential energy 
9% 

for which the energy equation becomes 

H = h,+Ly+gz (6.6) 

It is this equation, derived for a real fluid, that is taken to model the energetics 
of the turbulent, geophysical fluid. The assumptions P, = S, = 1 and ,U + const 
imply a similarity in the turbulent transport processes for mass, momentum and 
heat and imply not only that the respective eddy coefficients are equal to each 
other, but that they can be taken as constant with height over the dynamic 
boundary layer. While very little can be stated with certainty, there is some 
evidence (Priestley 1959) that these assumptions are reasonably good for forced 
convection estimates over water in which the scale of the investigation is large 
compared to individual events (such as cumulus clouds) and in which the interest 
is on the magnitude of the heat flux penetrating to various levels. In  any case 
these assumptions are qualitatively correct and will be accurate enough for 
present purposes. 

I1 P L M  47 
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The release of latent heat in the atmosphere occurs largely in individual 
cumulus clouds. On the scale of the hurricane, however, such discrete events are 
too small to be included. Instead, use is made of the fact that the strong turbulent 
mixing results, on the average, in smooth lateral proflles of temperature and 
moisture (such smooth profiles are reported observationally in the swirl regions 
of hurricanes). It is therefore adequate to represent the moisture transport, and 
hence the transport and release of latent heat, as a turbulent diffusive process 
in the vertical direction. The local lateral mixing assumed here does not contradict 
the neglect of lateral diffusive terms in the equations; on the cyclone scale, 
lateral diffusion plays no significant role in the energetics of the storm. 

The energy function H introduced here (equation (6.6)) can be interpreted as 
the sum of the geopotential energy and a ‘moist’ stagnation enthalpy. By its 
derivation, it is that function which is constant during changes of state (of a 
unit mass of moist air) for which the only entropy change is that due to release 
of latent heat (moist adiabatic processes). With the non-dimensionalization of 
§ 3, (6.7) becomes 

#HL + w ’ H ~  = + R‘, 

where H’ = H/H*,  R’ = R/(2QH*), with H* to be chosen later. 
Since the conductive capacity of the ocean is effectively infinite compared to 

that of the air, the sea surface is isothermal (T(0, x) = T,) and the water vapour 
concentration at the surface is saturated at  that temperature (y(0,z) = yz(Q)); 
the boundary condition at z = 0 states that H(0,x)  = H,, a constant, except in 
the innermost regions of the storm where the variation of y* with pressure should 
be included. The boundary condition at the top of boundary layer ( x  + 00) states 
that H + H,(z), the ambient energy profile for the tropical atmosphere; we can 
best make this requirement more explicit after discussing the ambient situation. 

6.2. The ambient atmosphere 

In  the absence of a storm, or at  the edges of a storm, we expect the ambient energy 
profile in the vertical to be that of the late summer tropical troposphere, for which 
the energy profile has on the average the characteristic shape given in figure 7. 
This profile is not a static distribution but is actively maintained by a continuing 
supply of sensible and latent heat from the warm sea surface, by vertical diffusion 
(in which we include cumulus convection), and by radiative loss to space. It 
is therefore important to include these ambient processes explicitly in a model 
of the energetics of a storm. 

In  the ambient profile (figure 7), the region above the elbow can have little 
influence on processes in the boundary layer, since there can be no net diffusive 
transport of energy across the elbow. We therefore adopt an idealized form of 
the ambient profile (figure 8) which is asymptotic to a constant (Ha), as 
z -+ 00. Since the upper air is assumed to be colder in this approximation than it 
actually is, this idealized profile provides a lower bound on the energy available 
in such an atmosphere. It is convenient to use these empirically based profiles 
and an observational value (Malkus 1962, p. 112) for the ambient energy flux 
at the sea surface (Ps = -pv(&H/dx)~,=,) ,  typically 1.8 x 106ergs/cm2sec, to fit 
a value of the eddy coefficient, v ;  we find v = 2.7 x lo5 cm2/sec, in good agreement 
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with estimates of bulk eddy coefficients by other authors for corresponding 
conditions (Priestley 1959, p. 100). 

In the absence of a storm the ambient profile modelled by figure 8 arises as a 

H ( j  ouleslk,) 

FIGURE 7. A typical ambient total enthdpy profle for the real atmosphere. 

33.0 34.0 35.0 

H (joules/kg) 

FIGURE 8. The enthalpy prome adopted for the enthalpy transport analysis of this paper. 
11-2 
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result of a balance between the terms on the right-hand side of (6.8). Using the 
subscript a to refer to this ambient condition, we have 

T ~ ~ ~ ~ .  + R” = 0, (6.9) 

where 7 = (H - H,)/(Hs- H,) and R” = R’/(H,- H,). According to (6.9)) we may 
estimate the net radiative heat loss from the fluid by the vertical divergence of 
the energy flux associated with a given ambient profile. For the profile of figure 7, 
the radiative cooling is maximum near the elbow (mid-troposphere) and small 
in the boundary layer and upper troposphere. 

In  the presence of a storm or other non-ambient situation, we expect that R 
will depend in part on the existing profile (7 rather than qa); that is, we expect 
that R will change as the profile changes. We therefore adopt the following 
somewhat arbitrary but simple model for R, 

R“ = -f( 4 * r(z)7 (6.10) 

where f(z) is determined by (6.9). Thus, 

f(4 = 31az%ha (6.11) 

for a particular ambient profile. We might equally well choose a different func- 
tional dependence on 7 (e.g. R” might be proportional to r2) in (6.10). Wedonot, 
however, expect the final results to  depend heavily on the particular form chosen; 
this expectation is verified later in numerical calculations. 

With the inclusion of the above model for the radiative energy sink, the energy 
equation (6.8) becomes (dropping primes) 

4% + wr, - rm +f(4 r = 0, (6.12) 

(6.13) 

This equation has been solved approximately for a number of choices of ambient 
profile, ~ ~ ( 2 ) ;  here we present the results for the three cases (displayed along 
with the empirically based profile in figure 9) : 

(1) r a  = 0. 
(2) qa = e-@. 

(3) ra = erfc (xlh). 

The first case is that of zero ambient profile (R = 0). For consistency the 
parameter h in cases (2) and (3) was chosen as 2.8 and 3.16 respectively (non- 
dimensional units) so that the ambient flux at the sea surface agrees with the 
observational value given earlier (this is simply a means of specifying a par- 
ticular profile or a particular ambient situation; the results do not depend 
significantly on the particular value of the flux which is used). 
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PI~URE 9. Total enthalpyprofiles: (a) q a  for case (2), ( b )  T,, for case (3), (c)  va from figure 8. 

6.3. Solution method and results 
We obtain approximate solutions to (6.12) by means of a modified Oseen method. 
The method consists in replacing the convective terms q 5 ~ ~ + w y ,  by the single 
term Wrj,,? where W is some z-averaged value of the vertical velocity w. After 
the solution of the resulting approximate equation is obtained with W as a 
parameter, W is determined by a consistancy calculation which picks out the 
best W in an average sense 

(6.14) 

(6.15) 

For case (I) abovef(z) E 0 and we have 

7 = e--iWlB. (6.16) 

-f As will appear, it is wvz rather than q5vs which is the dominant convective term, since 
although w is very small compared to q5, vz compared to 7. is even smaller and the solution 
is only weakly dependent on x. 
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Estimating W from the consistency calculation, we find (figure 10) that W is a 
slowly-varying function of x whose magnitude is everywhere < 1 WI ( W is the 
downdraft at z -+ 00) and decreases as x decreases. In  dimensional terms the ex- 
ponent in (6.16) is (W/v)  z, where v/W is the height scale associated with changes 
in the ambient energy profile due to forced convection; for v = O( lo5 cm2/sec) 
and W = O( W )  N 0.1 cm/sec (consistent with the results of 5 5), this height is 
about ten kilometres. Hence the solution (6.16) is effectively constant through 
the boundary layer, implying that the convection changes the ambient energy 
profile very little at all in the region of interest (the lowest few kilometres). 
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FIG-IJRE 10. Oseen-averaged non-dimensional vertical velocity 5 vs. radial co-ordinate x/xo. 

The flux from the sea surface is given by 

(6.17) 

and represents, for case (l), only the forced convection contribution, since in 
this case the ambient flux is zero. With AH = 1.0 x 10sergs/g (corresponding to 
AT = 4 "C, Ay = 0-0025), and Y = lo5 cm2/sec, the flux is 

Fs = 1.94 x lo4 ergs/cm2 see; 

this is an order of magnitude smaller than the ambient observational value 
reported earlier, implying that the contribution of the forced convection to the 
energy supply of the storm will be small compared to the contribution of the 
processes which maintain the ambient energy profile. 

It may be argued, however, that the intensity of the turbulent mixing, hence 
the eddy coefficients, increase with increasing velocities, hence decreasing x, 
and that this would have the effect of increasing F, with decreasing x. We can 
check this assertion, since the solution method used here can be applied for x- 
dependent diffusivities. We find that to a first approximation, the flux is un- 
changed from that given above; if v varies by a factor of three between x = xg 
and x = kx,, the increase in the flux is nowhere more than a few per cent. 

Case (2) includes the ambient processes, although the model is not very realistic 
since the net radiative loss in this case is maximum at z = 0, rather than in 
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midtroposphere; however, its simplicity makes it a convenient example. The 
solutionto (6.15) for this case is (Iwl < I) 

7 = exp { - z/h[+lEl h + (1 + $Z2h2)&]} 2 q , ( x )  exp ( - 4lGlz). (6.18) 
Here W (again computed from (6.14)) is a slowly varying function of x as before 
with IwI < I Wl,  so that it will be sufficient to show results for this upper bound. 
The energy profile in Dhe boundary layer is depressed slightly (figure 11) from its 
ambient values. The interpretation given previously of l/G (u/@ dimensionally) as 
the appropriate scale height for changes of the profile from ambient is confirmed. 
The forced convection in the outer regionl of the storm lowers the energy content 

FIGURE 11. Enthalpy profile with downdraft : (a)  ambient profile for case (2) ; 
( b )  profile with 53 = - 0.1. 

of the boundary-layer air slightly and increase8 the flux at the sea surface by a 
smallamount (approximatelybythefactor (l+*W),oratmost 5%for W = 0.1). 

The results above are qualitatively duplicated when we proceed to case (3), 
which has a more realistic distribution of radiative cooling. For particular values 
of 5, (6.15) is conveniently solved numerically using a double-sweep method; 
standard centred-difference formulas are used for the derivatives in the finite- 
difference scheme. The semi-infinite domain was truncated at some large value 

t These models do not apply near the updraft region, and do not strictly apply for z 
smaller than the crossing point where W changes sign; they can, however, be interpreted 
to apply for small positive 3 if the solution is rewritten as 

q g T,(Z) f+S. 
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of x ,  z*, and the boundary condition at infinity applied there. For large enough z*, 
the error introduced by this truncation is negligible, as was confirmed by using 
the method for the case W = 0, for which the exact solutions are just the ambient 
profiles. The results pbtained from this method are plotted in figure 12 for @ = 0 
(the ambient profile) and Z = 0.1. The profile depression is even less for this more 
realistic model than that depicted in figure 10. Only for extremely large down- 
drafts, an order of magnitude larger than those considered here, will the con- 
vection substantially depress the ambient profile. 

6.0 

5.0 

4.0 

z 
3.0 

2.0 

1 .O 

0 
0 0.1 0.2 0.3 0.4 0-5 0.6 0.7 0.8 0.9 1.0 

FIGURE 12. Enthalpy profile with downdraft: (a)  ambient profile for case (3) ; 
(a) profile with 9 = - 0.1. 

Since the model formulated for the radiative heat sink is somewhat arbitrary, 
it is worthwhile to show that the results do not depend on the model chosen. 
Accordingly, case (3) is repeated for a non-linear model, in which (6.10) takes 
the form Rff = - ~ ( z ) Y ' ,  (6.19) 

with f given by f(4 = ? l a z z h %  (6.20) 

The results (figure 13) are unchanged from those of the linear model (figure 12); 
the choice of radiative models, at  least within this simple framework, makes little 
difference. 

It is the sense of these results that, whatever model is chosen to represent the 
ambient process of the late summer tropical atmosphere, the energy profile that 
these processes support is, in the downdraft region, only marginally affected 
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by the swirling flow and the resultant boundary-layer flows of the hurricane, 
The primary effect of the wind fields is the slight depression of the profile by the 
downdraft and the very small increase in the flux at  the sea surface. There is, 
therefore, no significant ‘oceanic heating ’ in the sense of substantial additional 
sensible heat and water vapour transfer due to the wind fields; instead the 
boundary-layer energetics of the hurricane are dominated by the ambient vertical 
energy balance (the upward transfer of sensible and latent heat by turbulent 
mixing and cumulus convection and the radiative cooling) of the tropical atmo- 
sphere. Hence the use of thermodynamics based on ambient conditions for the 
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FIGURE 13. Enthalpy profile with downdraft: non-linear radiative model : (a)  ambient 
profile for case (3); ( b )  profile with W = - 0.1. 

maximum velocity estimates in tj 4 is consistent with these results. The energy 
supply for the storm does not, in this view, depend upon augmentation from the 
sea surface in the boundary layer, but rather on the heat and moisture content 
of the mid-troposphere air of the swirl region (and the ambient processes which 
maintain the ambient profile). 

7. Discussion 
The implications of the foregoing sections can be noted concisely. 
Since the region which contains high angular momentum fluid is a few miles 

deep and since the downdraft in a large storm (r,, = O[lOOO miles]) is of the order 
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of 1j200 miles per hour, a hurricane could last 30 days or more before it used up 
its angular momentum provided only that it remained over warm enough water 
so that the analysis of $ 6  is appropriate. 

The replacement of moisture, which is characteristic of the phenomenon in 
oceanic locations, cannot continue over land. Thus, as the downdraft into the 
boundary layer continues to supply air for the updraft, that air contains less 
and less enthalpy as time goes on. Accordingly, the updraft column becomes 
heavier as its incoming enthalpy supply is depleted in a very few days and the 
over-land duration of an intense storm is, at most, a few days. 

The intensity (wind speed) which can be achieved when the foregoing idealized 
configuration draws on the very simple dynamic and thermodynamic processes 
is significantly greater than any speeds which have actually been observed or 
inferred in real storms. It is clear that, even when one takes into account the 
inevitable ‘losses’ in the system and the departure from ideality (especially in the 
eye) no additional subtler mechanisms or processes need to  be invoked to render 
the model consistent. The mechanisms we have described already provide all 
that is needed to maintain such configurations. 

Parts of this study were supported by the National Science Foundation under 
Contract NSF-GP-17383, by the Office of Naval Research under Contract 
Nooo14-67-A-0298-0002, and by TRW Independent Research and Development 
Program. 
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